
Software Engineering

 1A - 1

TOPICS

The Nature and History of Software

Development

Problems with Software Development

Software Engineering Paradigms and

Technology

Software Engineering

 1A - 2

THE NATURE OF SOFTWARE

l Characteristics of Software

l Failure Curves for Hardware and Software

l Software Components

l Software Configuration

l Software Application Areas

Software Engineering

 1A - 3

l Software is programs, documents, and data.

l Software is developed or engineered; it is not

manufactured like hardware.

l Software does not wear out, but it does deteriorate.

l Most software is custom-built, rather than being

assembled from existing components.

l Software is a business opportunity.

Characteristics of Software

1. Many people have the non-engineering view of software:

l as computer programs (i.e., source code and/or executables),

l as data structures (e.g., data base schemas), and

l as operation and user documentation (usually created as an

afterthought when the "real" work is done)

2. A major factor in the speed at which quality software is developed is the failure

to reuse software:

l there are few reusable component libraries,

l there is a bias against using "old" routines or routines "not invented

here", and

l software as a creative art is a perception that is held by many people.

3. Software has become a business opportunity, where the success or failure of

a business (and the jobs of the people associated with it) depends upon the

timely development of quality software. The customer is demanding both high

quality in the software (and once a business has a reputation of putting out

"junk", word gets around quickly) and timeliness of delivery (the customer

wants the software now).

Software Engineering

 1A - 4

Failure Curves for
Hardware and Software

Time Time

Failure

Rate

"Infant
Mortality"

"Wear
Out"

Ideal

Actual

Change

FAILURE CURVE
FOR HARDWARE

FAILURE CURVE
FOR SOFTWARE

Hardware tends to have a wear-in time during which it has a higher probability of

failure. This is generally referred to as infant mortality. Once the initial period is

passed, hardware tends to operate without failure until components age enough

to cause breakdown.

Moral

Don't buy extended warranty contracts.

Standard warranty is usually long enough to

pass through the infant mortality period.

Software also shows an early error rate, but updates should remove the most

obvious problems which render the software unreliable. Updates for added

functionality often add more errors, as is shown by the spikes on the failure

curve for software. As updates are made, more latent errors appear in the

software to make it inherently less reliable until the software is finally considered
unreliable enough to stop using the software product or to perform a major

redesign and rewrite of the software.

Software Engineering

 1A - 5

Software Components

l Software programs, or software systems, consist of
components.

l A set of components which comprise a logical unit of software is
called a software configuration item.

l Reuse and development of reliable, trusted software
components improves software quality and productivity.

l Computer language forms:

m Machine level (microcode, digital signal generators)

m Assembly language (PC assembler, controllers)

m High-order languages (FORTRAN, Pascal, C, Ada, ...)

m Specialized languages (LISP, OPS5, Prolog, ...)

m Fourth generation languages (databases, windows apps)

Software Engineering

 1A - 6

Software Configuration

Software
Project

Plan
Software

Requirements

Specification
Software

Design

Software
Test Plan and

Procedures

Data

Structures
and

Dictionary

Code

User

Documents

Composition of Software

The software we develop is composed of these parts, also known as software configuration items:

l Software Project Plan - A document which details the tasks, schedules, needed

resources, and approach to carry out development. This is the first document produced

and it includes cost details.

l Software Requirements Specification - A document which identifies what is required of

the software (as opposed to the design document, which describes how to implement the

software). This document includes information on how implementation of the

requirements will be verified (i.e., some initial test considerations). This very important

document is often quite time consuming to produce.

l Software Test Plan and Procedures - A document which describes the test methods,

approaches, procedures, and the support required for testing the software code

components and the integrated software system. This document includes test data and

expected results and is developed during both the requirements definition and design

phases of the project.

l Data Structures and Dictionary - The Data Dictionary documents all data structures and

the definitions of terms, variables, and other items of interest regarding the details of the

data in the system. It supports software design, coding, and maintenance and is

developed during the requirements and design phases.

l Software Design Document - A document which clearly details the behavior and

structure of the system as a whole and each software code component.

l User Documents - These are user guides, reference guides, application notes, and other

items deemed necessary for the users.

l Code - The compilable source code of the system.

Software Engineering

 1A - 7

Software Development Activities

l Planning Activity

m Software Project Plan

l Requirements Definition Activity

m Software Requirements

Specification

m Software Test Plan and

Procedures

m Data Structures and Dictionary

m User Documents

l Design Activity

m Software Design Documents

m Software Test Plan and
Procedures

m Data Structures and Dictionary

l Coding and Testing Activity

m Code

m Software Test Plan and
Procedures

l Delivery and Maintenance Activity

m User Documents

m Others as needed

When are the Software Configuration Items Produced?

l The Software Configuration Items are drafted, reviewed, revised, etc., at many

points throughout the activities performed during the development of the software.

Seldom is a Software Configuration Item felt to be completely finished.

l All Software Configuration Items are placed under configuration control, allowing for

them to be changed and all changes to them to be tracked. Any particular version of

any of the configuration items may be recreated when desired.

l The control of the Software Configuration Items extends from the planning stages of

the project through the maintenance activities -- the entire life of the software.

Software Engineering

 1A - 8

Software Application Domains

l System

m compilers

m editors

m Operating Systems

l Real Time

m machine control

m auto controls

l Business

m databases

m stock management

l Personal Computer

m all non-realtime above

l Embedded

m appliance control

m FPGA programs

m auto controls

l Engineering and Scientific

m simulation

m computer-aided design

m "number crunching"

l Artificial Intelligence

m expert systems

m neural networks

There are many, many diverse application domains in which software is being

developed, and, for each domain and each organization within each domain,

there are many, many different ways to develop this software:

l ad hoc, which is by far the most common

l using different accepted engineering methodologies, such as

m the classic "waterfall" approach

m rapid prototyping

m fourth generation techniques

m the spiral model

m a combination of the above

l using different sets of procedures, which include

m documentation standards

m coding standards

m test standards

m procedures for estimating cost and schedule

Software Engineering

 1A - 9

HISTORY OF
SOFTWARE DEVELOPMENT

l Role of Software

l Industrial View

Software Engineering

 1A - 10

Role of Software

1950 1960 1970 1980 1990

First Era

Second Era

Third Era

Fourth EraBatch Oriented

Limited

Distribution

Custom Software

Multiuser

Real-Time

Database

Product Software

Distributed
Systems

Embedded

Smarts

Low-Cost
Hardware

Consumer

Impact

Desk-Top Systems

Object Orientation

Expert Systems

Neural Nets

Parallel Computing

The explosive growth of computer speeds

and capabilities at a very low cost
fuels the demand for very complex
software and increases customer

expectations.

1. Early years (to about 1970):

l large, expensive, few, protected computers

l small programs inefficiently written

l major constraints (memory, speed, I/O)

l non-realtime batch-oriented software; single user

l single programmer per program

2. Middle years (1970 to 1990):

l realtime software development

l multiple programmer teams

l software development industry emerges

l emerging interest in engineering the development of software

l department-level computers make them more accessible; multiuser

3. Later years (1980 to 1990):

l personal computer makes computing highly accessible

l very large software industry develops

l large programs and software systems emerge

l hardware is distributed using networks

l communications using computers evolves

l software becomes highly departmentalized

Software Engineering

 1A - 11

Role of Software, Continued
Where Do We Go From Here?

l Parallel computing to extend
speed of computation

l Object-oriented methods of
software design

l Software frameworks evolve to
handle larger and multiprogram

systems

l Heavy dependence on graphics
interfaces

l Artificial intelligence and neural

computing become useful

l National computing motivates
huge software systems

l Advanced programming

languages

l One concept which dominates all of these ideas is that high quality software is

required in all cases.

l The software engineering community has learned that two things are needed

to develop high quality software:

m a good software development process

m technological innovations which support the selected process

l Technology alone, without the process, is not enough and often adds to the

risk and the problems rather than reducing the risk and the problems.

Software Engineering

 1A - 12

Industrial View l Why does it take so

long to finish a

working software

system?

l Why are development

costs so high?

l Why can't we find all

software errors before

software is delivered?

l How can we measure

the progress of

software

development?

l How can we survive in

the global economy?

1. Early software development was considered to be an "art form"

2. Formal methods did not exist or were not followed

3. Programming education mainly by trial and error

4. Example of problems: Operating System for the IBM 360 (data extracted from The

Mythical Man-Month by Fredrick Brooks, Addison-Wesley, 1975)

l large software product (almost 1 million lines of code)

l as errors were fixed, more errors were produced

l adding people to the project made things worse

l few formal methods of design were known or used

l project was abandoned and the operating system was completely rewritten

l project had a major impact on producing formal methods in software

engineering

